
Run-time Environment
Prof. James L. Frankel

Harvard University

Version of 7:46 PM 11-Apr-2022
Copyright © 2022, 2020, 2018, 2016, 2015 James L. Frankel. All rights reserved.

Storage Organization

• Automatic objects are
stored on the stack

• Global/static objects are
stored in the Static Data area

• malloc‘ed objects are
stored in the heap

• Unused heap storage is
either Garbage Collected
or explicitly freed – in C,
the heap storage needs to
be explicitly freed

• This format allows both
the stack and the heap
to grow

Code/Text

Static Data

Heap

Stack

Low

High

↑

↓

2

Global/Static Variables

• All global/static variables are stored in the Static Data area
• The Static Data area is introduced in MIPS assembly code with the .data

directive
• In MIPS assembly code, all global variables (except for main) should be

declared and referenced using the variable name declared by the
programmer, but with a prefix of _Global_
• For example, the global user variable myVar would be named _Global_myVar in MIPS

assembly code

• There must be a function named main defined in the compilation
module
• The main function name is the only global symbol that cannot and should not

have a prefix of _Global_

3

MIPS O32 ABI Calling Conventions (simplified)

• First four words of actual parameters (arguments) are passed in registers
$a0 through $a3
• Register $a0 will contain all or part of the leftmost (first) actual parameter, if there

are any parameters

• First two words of return value are returned in registers $v0 and $v1
• If the return value fits in a single word, it is returned in register $v0

• If the return value is either a structure or a union, then the caller must pass
a pointer to a sufficiently large memory area for that return value in $a0.
• The callee places the return value into this area before it returns

• If $a0 is used for this purpose, then registers $a1-$a3 are used for the first three
words of actual parameters

4

Temporary ($t) Registers

• Before calling a subroutine, the caller must push any temporary ($t)
registers whose values it requires being maintained across the call
• The stack is used to save the $t registers’ values so that subroutines can be

recursively nested

• After returning from the subroutine, the caller must pop any
temporary ($t) registers that it pushed immediately before the call

5

Saved ($s) Registers

• On entry, the callee must push any saved ($s) registers that it may
modify
• The stack is used to save the $s registers’ values so that subroutines can be

recursively nested

• Just prior to returning, the callee must pop any saved ($s) registers
that it saved immediately before the call

• Registers are saved in numerical order, with higher-numbered
registers saved in higher memory addresses

6

Return Address Register

• The $ra register is loaded with the subroutine’s return address by the And
Link instructions
• This is the mechanism through which a subroutine is called

• However, if a nested subroutine call is executed, register $ra would be
overwritten

• Therefore, if a subroutine is not a leaf subroutine, then, on entry, the callee
must push the return address ($ra) register
• A leaf subroutine is one that does not call any other subroutines
• The stack is used to save the $ra register’s value so that subroutines can be

recursively nested

• Just prior to returning, the callee must pop the return address ($ra) register
if it saved it on entry

7

Argument ($a) Registers

• The $a registers are loaded with the actual parameters (arguments) passed
to the subroutine by the caller
• If more than four words are required for actual parameters, the remaining words are

passed on the stack

• However, if a nested subroutine which requires parameters is called, some
of the $a registers would be overwritten

• Therefore, if a subroutine is not a leaf subroutine, then, on entry, the callee
must push the actual parameter ($a) registers that might be overwritten
• A leaf subroutine is one that does not call any other subroutines
• The stack is used to save the $a registers values’ so that subroutines can be

recursively nested

• Just prior to returning, the callee must pop the actual parameter ($a)
registers if it saved them on entry

8

Local Variables

• Space for local (automatic) variables must be reserved on the stack

• This space is reserved by the callee at subroutine entry

• The space is released by the callee at subroutine return

• The stack is used for local variables so that subroutines can be
recursively nested

9

Stack Frames

• A stack frame (sometimes referred to as an activation record) is created on the
stack for each invocation of a subroutine (i.e., each time any subroutine is called)
• A new stack frame is created for each recursive subroutine call

• The format of the stack frame is the embodiment of the interface between the
caller and the callee

• The stack frame contains the data in memory needed for a subroutine in an
agreed representation
• Passed actual parameters
• Return value
• Local variables
• Locations in which saved registers ($s) can be saved
• Return address
• …

10

Program Execution/Stack Backtracing

• By following the conventions for use of the registers and the stack frame, a
debugger is able to determine the state of the program at any point in time

• The $gp will point to the memory used for global variables (simplification)
• The program counter will point to the instruction that is about to be

executed
• The PC’s value can be used to determine the currently executing subroutine

• $sp will point to the top of stack
• $fp will allow access to the current stack frame

• The stack frame will contain all local variables
• The $ra in the stack frame points to the caller’s instruction to be executed upon

return
• The $fp in the stack frame points to the caller’s stack frame

11

Initial Return Address Register Value

• The $ra register is initialized to zero by the operating system before
starting any user program

• This allows a chain of return addresses found in stack frames to be
followed through arbitrarily nested subroutine calls

12

Stack Frame Pointer

• We could address data on the stack using an offset off the $sp, but…

• Because data may be pushed on the stack and popped off the stack
during the execution of a subroutine (thus changing where the $sp
points), the offsets to access data on the stack would change

• We would like to address data on the stack using a stable offset
during the execution duration of a subroutine

• Therefore, we dedicate another register, $fp, the frame pointer, to be
a stable pointer to the current stack frame

13

Stack Frame Constraints

• Stack frame must be on a double-word boundary
• Enforces alignment for the largest MIPS data type

• Always leave space in the stack frame for $a0-$a3 and $ra in case a
subroutine is called

• The old frame pointer is stored in the stack frame as a dynamic stack
frame back link
• Always leave space in the stack frame for the old $fp

• $ra and $fp are stored in the general register save area

• The minimum size for a stack frame is 24 bytes

14

Stack Frame Argument Build Area

• Before calling a subroutine, any additional data pushed on the stack
must be popped
• After doing so, the Argument Build Area will be on the top of stack

• The Argument Build Area will consist of all words needed for
arguments after the first four words are passed in $a0 through $a3

• At the time the stack frame is allocated on subroutine entry, the
maximum size required for arguments to be passed to called
subroutines must be reserved

15

Stack Frame Format

Caller s argument build area

Temps (used by compiler-
generated code to save values in
$t registers or when any registers

are spilled)

Low address

High address

 $sp (stack pointer)

Local (automatic) variables

 $fp (frame pointer)

Stack grows in this direction

arg4 (leftmost after first four
arguments)

argn-1 (rightmost)

arg0-arg3 are passed in registers
$a0-$a3, additional words are

passed here

allocated in the
caller s stack

stack frame allocated
by callee

Callee s argument build area
(for excess arguments to be

passed to subroutines we call)

General register save area
(includes return address ($ra),

and old frame pointer ($fp),
$s0-$s7, $a0-$a3)

The current
subroutine is

the callee

Possible additional pushed data

additional data on
stack

callee s stack frame

Possible word for double-word
alignment

16

Our Stack Frame Implementation

• In our implementation, on entry to a function we will always save:
• The $fp, caller’s frame pointer
• The $ra, return address
• All $a registers that are used to pass parameters to us
• All of the $s registers

• The $fp, $ra, and the $s registers will be restored just before we return to
our caller

• Before calling a function, we will save:
• Any $t registers whose values we need after that function returns
• We save the values of those $t registers in the Temps portion of the stack frame

• The $t registers will be restored immediately after that function returns

17

Dynamic vs. Static Old Frame Pointer Links

• In our stack frame, we store the old frame pointer (i.e., the frame
pointer of the caller subroutine – that is, the subroutine that called
us)

• Some languages allow definition of functions within other functions
• These languages allow access to the local variables of the functions in which

they’re nested

• Implementation of this concept requires some means to access all of
the enclosing function’s local variables
• A static link – that is, a pointer to the stack frame of the enclosing function’s

most recent invocation
• A display – an array of pointers to the stack frames of all of the enclosing

function’s most recent invocations

18

