Run-time Environment

Prof. James L. Frankel
Harvard University

Version of 7:46 PM 11-Apr-2022
Copyright © 2022, 2020, 2018, 2016, 2015 James L. Frankel. All rights reserved.

Storage Organization

Automatic objects are

stored on the stack Low

* Global/static objects are Code/Text

stored in the Static Data area
* malloc‘ed objects are

Static Data

stored in the heap

. Heap
* Unused heap storage is

either Garbage Collected J
or explicitly freed —in C,
the heap storage needs to

be explicitly freed A
* This format allows both
the stack and the heap High Stack

to grow

Global/Static Variables

* All global/static variables are stored in the Static Data area

* The Static Data area is introduced in MIPS assembly code with the .data
directive

* In MIPS assembly code, all global variables (except for main) should be
declared and referenced using the variable name declared by the
programmer, but with a prefix of _Global_

* For example, the global user variable myVar would be named _Global_myVar in MIPS
assembly code

* There must be a function named main defined in the compilation
module

* The main function name is the only global symbol that cannot and should not
have a prefix of _Global _

MIPS 032 ABI Calling Conventions (simplified)

* First four words of actual parameters (arguments) are passed in registers
Sa0 through Sa3

* Register $Sa0 will contain all or part of the leftmost (first) actual parameter, if there
are any parameters
* First two words of return value are returned in registers SvO and Sv1
* |If the return value fits in a single word, it is returned in register SvO

* |f the return value is either a structure or a union, then the caller must pass
a pointer to a sufficiently large memory area for that return value in $a0.
* The callee places the return value into this area before it returns

* |f Sa0 is used for this purpose, then registers Sal-Sa3 are used for the first three
words of actual parameters

Temporary (St) Registers

* Before calling a subroutine, the caller must push any temporary (St)
registers whose values it requires being maintained across the call

* The stack is used to save the St registers’ values so that subroutines can be
recursively nested

* After returning from the subroutine, the caller must pop any
temporary (St) registers that it pushed immediately before the call

Saved (Ss) Registers

* On entry, the callee must push any saved (Ss) registers that it may
modify

* The stack is used to save the Ss registers’ values so that subroutines can be
recursively nested

e Just prior to returning, the callee must pop any saved (Ss) registers
that it saved immediately before the call

* Registers are saved in numerical order, with higher-numbered
registers saved in higher memory addresses

Return Address Register

* The Sra register is loaded with the subroutine’s return address by the And
Link instructions

* This is the mechanism through which a subroutine is called

* However, if a nested subroutine call is executed, register Sra would be
overwritten

* Therefore, if a subroutine is not a leaf subroutine, then, on entry, the callee
must push the return address (Sra) register
* A leaf subroutine is one that does not call any other subroutines

* The stack is used to save the Sra register’s value so that subroutines can be
recursively nested

e Just prior to returning, the callee must pop the return address (Sra) register
if it saved it on entry

Argument (Sa) Registers

* The Sa registers are loaded with the actual parameters (arguments) passed
to the subroutine by the caller

* If more than four words are required for actual parameters, the remaining words are
passed on the stack

* However, if a nested subroutine which requires parameters is called, some
of the Sa registers would be overwritten

* Therefore, if a subroutine is not a |leaf subroutine, then, on entry, the callee
must push the actual parameter (Sa) registers that might be overwritten
* A leaf subroutine is one that does not call any other subroutines

* The stack is used to save the Sa registers values’ so that subroutines can be
recursively nested

e Just prior to returning, the callee must pop the actual parameter (Sa)
registers if it saved them on entry

Local Variables

 Space for local (automatic) variables must be reserved on the stack
* This space is reserved by the callee at subroutine entry
* The space is released by the callee at subroutine return

* The stack is used for local variables so that subroutines can be
recursively nested

Stack Frames

» A stack frame (sometimes referred to as an activation record) is created on the
stack for each invocation of a subroutine (i.e., each time any subroutine is called)

A new stack frame is created for each recursive subroutine call

 The format of the stack frame is the embodiment of the interface between the
caller and the callee

* The stack frame contains the data in memory needed for a subroutine in an
agreed representation
» Passed actual parameters
e Return value
* Local variables
* Locations in which saved registers (Ss) can be saved
e Return address

Program Execution/Stack Backtracing

* By following the conventions for use of the registers and the stack frame, a
debugger is able to determine the state of the program at any point in time

* The Sgp will point to the memory used for global variables (simplification)

* The program counter will point to the instruction that is about to be
executed

* The PC’s value can be used to determine the currently executing subroutine
* Ssp will point to the top of stack

 Sfp will allow access to the current stack frame
 The stack frame will contain all local variables

* The Sra in the stack frame points to the caller’s instruction to be executed upon
return

* The Sfp in the stack frame points to the caller’s stack frame

Initial Return Address Register Value

* The Sra register is initialized to zero by the operating system before
starting any user program

* This allows a chain of return addresses found in stack frames to be
followed through arbitrarily nested subroutine calls

Stack Frame Pointer

* We could address data on the stack using an offset off the Ssp, but...

* Because data may be pushed on the stack and popped off the stack
during the execution of a subroutine (thus changing where the Ssp
points), the offsets to access data on the stack would change

* We would like to address data on the stack using a stable offset
during the execution duration of a subroutine

* Therefore, we dedicate another register, Sfp, the frame pointer, to be
a stable pointer to the current stack frame

Stack Frame Constraints

 Stack frame must be on a double-word boundary
* Enforces alignment for the largest MIPS data type

* Always leave space in the stack frame for Sa0-Sa3 and Sra in case a
subroutine is called

* The old frame pointer is stored in the stack frame as a dynamic stack
frame back link
» Always leave space in the stack frame for the old Sfp

* Sra and Sfp are stored in the general register save area
* The minimum size for a stack frame is 24 bytes

Stack Frame Argument Build Area

» Before calling a subroutine, any additional data pushed on the stack
must be popped

» After doing so, the Argument Build Area will be on the top of stack

* The Argument Build Area will consist of all words needed for
arguments after the first four words are passed in $a0 through Sa3

* At the time the stack frame is allocated on subroutine entry, the
maximum size required for arguments to be passed to called
subroutines must be reserved

Stack Frame Format

Stack grows in this direction

Low address & Ssp (stack pointer)
Possible additional pushed data

& Sfp (frame pointer)

Callee’s argument build area
(for excess arguments to be
passed to subroutines we call)

Possible word for double-word
The current S enment
subroutine is General register save area
the caIIee (includes return address (Sra),

and old frame pointer (Sfp),
$50-$s7, $a0-$a3) — callee’s stack frame
Temps (used by compiler-
generated code to save values in
allocated in the St registers or when any registers
I:I caller’s stack are spilled)

stack frame allocated
by callee

Local (automatic) variables

l:, additional data on
stack arg4 (leftmost after first four arg0-arg3 are passed in registers

arguments) Sa0-$a3, additional words are
Caller’s argument build area passed here

High address | argn-1 (rightmost)

Our Stack Frame Implementation

* In our implementation, on entry to a function we will always save:
* The Sfp, caller’s frame pointer
* The Sra, return address
 All Sa registers that are used to pass parameters to us
 All of the Ss registers

* The Sflo, Sra, and the Ss registers will be restored just before we return to
our caller

* Before calling a function, we will save:
* Any St registers whose values we need after that function returns
* We save the values of those St registers in the Temps portion of the stack frame

* The St registers will be restored immediately after that function returns

Dynamic vs. Static Old Frame Pointer Links

* In our stack frame, we store the old frame pointer (i.e., the frame
pointer of the caller subroutine — that is, the subroutine that called
us)

* Some languages allow definition of functions within other functions

* These languages allow access to the local variables of the functions in which
they’re nested

* Implementation of this concept requires some means to access all of
the enclosing function’s local variables

» A static link — that is, a pointer to the stack frame of the enclosing function’s
most recent invocation

* A display —an array of pointers to the stack frames of all of the enclosing
function’s most recent invocations

